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While numerous strategies exist for 1,2- 1,3- and 1,4-
asymmetric induction,1,2 control of more remote relationships 
continues to be a challenging problem in organic synthesis.3 This 
problem is further compounded when the remote stereogenic 
centers involve alkyl branching, as in structures I and II. 
Classically, such structures would be synthesized by the coupling 
of two smaller fragments at a nonstereogenic center. 

X ^^K^^^^Js. 

We report herein a conceptually new solution to the problem 
of 1,6-asymmetric induction defined by I, involving three highly 
enantio- and diastereoselective transformations of meso-(ii*-2,4-
hexadien-1,6-dial)iron tricarbonyl, 1. This procedure is illustrated 
by the stereocontrolled synthesis of triene 2, an intermediate that 
we have elaborated into the <w-indacene nucleus 3 of ikaruga­
mycin, 4.4 Since Boeckman has already described the conversion 
of 3 into ikarugamycin,3 our asymmetric synthesis of 3 constitutes 
a formal total synthesis of the natural product.6-7 

The starting point for these investigations was our observation 
that the asymmetric allylboration of 1 proceeds with exceptional 
diastereo- and enantioselectivity.» Similarly, the asymmetric (E)-
crotylboration of 1 using 0.95 equiv of (SjS)-S in toluene at -78 
0C9 provided the *-exo diastereomer 6 in 90% yield and >98% 
ee. This reaction sets the C(5)-Me stereocenter of 2, introduces 
a diene allylic alcohol function that is suitable for subsequent 
elaboration into the C(6)-Et substituent,10-1 • and provides a third 
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stereogenic unit in the form of the ??4-diene Fe(CO)3 complex 
that is used to induce the C(11) stereocenter of 2. The latter 
problem was addressed first. 

Condensation of 6 with 1.0 equiv of Meldrum's acid gave 7 in 
92% yield. Treatment of 7 with 2.5 equiv of H2C-CHMgBr in 
THF at -78 0C with warming to 0 0C then provided the 1,4-
adduct 8 in 83% yield as the only observed stereoisomer (>97:3 
by 500-MHz 'H NMR analysis).12 The stereochemical course 
of this reaction is rationalized by III, in which H2C=CHMgBr 
adds to the bottom face of the alkylidene malonate, away from 
the -Fe(CO)3 unit that blocks the top face.11-12 Acylation of 8 

under standard conditions provided 9, which was then treated 
with 2.0 equiv of Et3Al in CH2Cl2 at -20 9C to 0 0C.10 This 
provided 10 as the sole product in 69-75% overall yield. That 
the alkylation of 9 proceeds with retention of configuration, 
evidently with the -Fe(CO)3 unit assisting in the departure of the 
acetate leaving group and Et3Al adding to the -Fe(CO)3-stabilized 
carbocation from the exo face as illustrated in iy,io,n,i3 w a s 
verified by the further conversion of 10 to the ikarugamycin 
subunit 3. Lillya established years ago that solvolysis of Fe-
(CO)3-complexed dienylic dinitrobenzoates proceeds with re­
tention of configuration,13 and more recently Uemura and co­
workers developed the alkylation of Fe(CO)3-complexed dienylic 
acetates with soft carbon nucleophiies.10 However, to the best 
of our knowledge, the elaboration of 10 to 3 provides the first 
experimental evidence that such C-alkylations also proceed with 
retention of configuration. 

The -Fe(CO)3 unit was removed by treatment of 10 with 
FeCl3.

11 Hydrolysis of the resulting uncomplexed diene with 
H2O in 3-pentanone at reflux followed by CH2N2 esterification 
provided methyl ester 11 in 70% overall yield.12 Hydroboration 
of both vinyl groups was performed by treating 11 with 3.0 equiv 
of 9-BBN. The two primary alcohols were then differentiated 
by cyclization of the 5-hydroxy ester to a j-lactone upon exposure 
of the diol ester to PPTs in toluene at 80 0 C . Finally, Swern 
oxidation14 of the remaining primary alcohol provided lactone 
aldehyde 12 in 57-60% overall yield. Triene dialdehyde 2 was 
then obtained in 5 6% overall yield from 12 via the series of standard 
functional group manipulations summarized in Scheme I.15 
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The intramolecular Diels-Alder reaction of 2 (C6H6, 85 0C, 
82 h)16 provided a 12:1 mixture of cycloadducts which, without 
separation, was directly cyclized to enal 13 upon treatment with 
BzI2NH2

+CF3CO2- in C6H6 at 50 0 C." This provided diaster-
eomerically pure 13 in 88% overall yield. Finally, reduction of 
13 with [(Ph3P)CuH] 6 in wet benzene18 provided the ikarugamycin 
as-indacene nucleus 3 ([a]20

D +21.2° (c = 0.81, CHCl3); lit.
19 

[a] 20D +12.3° (c »0.71, CHCl3)) in 85% yield as a 9:1 mixture 
of aldehyde epimers. The 1H NMR data obtained for 3 and the 
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aldehyde epimer are in complete agreement with the NMR spectra 
of authentic samples kindly provided by Professor R. K. 
Boeckman, thereby completing the formal total synthesis. 
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